Quant.java 11.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
package cn.wisenergy.chnmuseum.party.common.checkcode;

/**
 * <p>
 * </p>
 *
 * @author: wuhongjun
 * @version:1.0
 */
public class Quant {
	protected static final int netsize = 256; /* number of colours used */

	/* four primes near 500 - assume no image has a length so large */
	/* that it is divisible by all four primes */
	protected static final int prime1 = 499;
	protected static final int prime2 = 491;
	protected static final int prime3 = 487;
	protected static final int prime4 = 503;

	protected static final int minpicturebytes = (3 * prime4);
	/* minimum size for input image */

	/*
	 * Program Skeleton ---------------- [select samplefac in range 1..30] [read
	 * image from input file] pic = (unsigned char*) malloc(3*width*height);
	 * initnet(pic,3*width*height,samplefac); learn(); unbiasnet(); [write
	 * output image header, using writecolourmap(f)] inxbuild(); write output
	 * image using inxsearch(b,g,r)
	 */

	/*
	 * Network Definitions -------------------
	 */

	protected static final int maxnetpos = (netsize - 1);
	protected static final int netbiasshift = 4; /* bias for colour values */
	protected static final int ncycles = 100; /* no. of learning cycles */

	/* defs for freq and bias */
	protected static final int intbiasshift = 16; /* bias for fractions */
	protected static final int intbias = (((int) 1) << intbiasshift);
	protected static final int gammashift = 10; /* gamma = 1024 */
	protected static final int gamma = (((int) 1) << gammashift);
	protected static final int betashift = 10;
	protected static final int beta = (intbias >> betashift); /*
																 * beta = 1/1024
																 */
	protected static final int betagamma = (intbias << (gammashift - betashift));

	/* defs for decreasing radius factor */
	protected static final int initrad = (netsize >> 3); /*
															 * for 256 cols,
															 * radius starts
															 */
	protected static final int radiusbiasshift = 6; /*
													 * at 32.0 biased by 6 bits
													 */
	protected static final int radiusbias = (((int) 1) << radiusbiasshift);
	protected static final int initradius = (initrad
			* radiusbias); /* and decreases by a */
	protected static final int radiusdec = 30; /* factor of 1/30 each cycle */

	/* defs for decreasing alpha factor */
	protected static final int alphabiasshift = 10; /* alpha starts at 1.0 */
	protected static final int initalpha = (((int) 1) << alphabiasshift);

	protected int alphadec; /* biased by 10 bits */

	/* radbias and alpharadbias used for radpower calculation */
	protected static final int radbiasshift = 8;
	protected static final int radbias = (((int) 1) << radbiasshift);
	protected static final int alpharadbshift = (alphabiasshift + radbiasshift);
	protected static final int alpharadbias = (((int) 1) << alpharadbshift);

	/*
	 * Types and Global Variables --------------------------
	 */

	protected byte[] thepicture; /* the input image itself */
	protected int lengthcount; /* lengthcount = H*W*3 */

	protected int samplefac; /* sampling factor 1..30 */

	// typedef int pixel[4]; /* BGRc */
	protected int[][] network; /* the network itself - [netsize][4] */

	protected int[] netindex = new int[256];
	/* for network lookup - really 256 */

	protected int[] bias = new int[netsize];
	/* bias and freq arrays for learning */
	protected int[] freq = new int[netsize];
	protected int[] radpower = new int[initrad];
	/* radpower for precomputation */

	/*
	 * Initialise network in range (0,0,0) to (255,255,255) and set parameters
	 * -----------------------------------------------------------------------
	 */
	public Quant(byte[] thepic, int len, int sample) {

		int i;
		int[] p;

		thepicture = thepic;
		lengthcount = len;
		samplefac = sample;

		network = new int[netsize][];
		for (i = 0; i < netsize; i++) {
			network[i] = new int[4];
			p = network[i];
			p[0] = p[1] = p[2] = (i << (netbiasshift + 8)) / netsize;
			freq[i] = intbias / netsize; /* 1/netsize */
			bias[i] = 0;
		}
	}

	public byte[] colorMap() {
		byte[] map = new byte[3 * netsize];
		int[] index = new int[netsize];
		for (int i = 0; i < netsize; i++)
			index[network[i][3]] = i;
		int k = 0;
		for (int i = 0; i < netsize; i++) {
			int j = index[i];
			map[k++] = (byte) (network[j][0]);
			map[k++] = (byte) (network[j][1]);
			map[k++] = (byte) (network[j][2]);
		}
		return map;
	}

	/*
	 * Insertion sort of network and building of netindex[0..255] (to do after
	 * unbias)
	 * -------------------------------------------------------------------------
	 * ------
	 */
	public void inxbuild() {

		int i, j, smallpos, smallval;
		int[] p;
		int[] q;
		int previouscol, startpos;

		previouscol = 0;
		startpos = 0;
		for (i = 0; i < netsize; i++) {
			p = network[i];
			smallpos = i;
			smallval = p[1]; /* index on g */
			/* find smallest in i..netsize-1 */
			for (j = i + 1; j < netsize; j++) {
				q = network[j];
				if (q[1] < smallval) { /* index on g */
					smallpos = j;
					smallval = q[1]; /* index on g */
				}
			}
			q = network[smallpos];
			/* swap p (i) and q (smallpos) entries */
			if (i != smallpos) {
				j = q[0];
				q[0] = p[0];
				p[0] = j;
				j = q[1];
				q[1] = p[1];
				p[1] = j;
				j = q[2];
				q[2] = p[2];
				p[2] = j;
				j = q[3];
				q[3] = p[3];
				p[3] = j;
			}
			/* smallval entry is now in position i */
			if (smallval != previouscol) {
				netindex[previouscol] = (startpos + i) >> 1;
				for (j = previouscol + 1; j < smallval; j++)
					netindex[j] = i;
				previouscol = smallval;
				startpos = i;
			}
		}
		netindex[previouscol] = (startpos + maxnetpos) >> 1;
		for (j = previouscol + 1; j < 256; j++)
			netindex[j] = maxnetpos; /* really 256 */
	}

	/*
	 * Main Learning Loop ------------------
	 */
	public void learn() {

		int i, j, b, g, r;
		int radius, rad, alpha, step, delta, samplepixels;
		byte[] p;
		int pix, lim;

		if (lengthcount < minpicturebytes)
			samplefac = 1;
		alphadec = 30 + ((samplefac - 1) / 3);
		p = thepicture;
		pix = 0;
		lim = lengthcount;
		samplepixels = lengthcount / (3 * samplefac);
		delta = samplepixels / ncycles;
		alpha = initalpha;
		radius = initradius;

		rad = radius >> radiusbiasshift;
		if (rad <= 1)
			rad = 0;
		for (i = 0; i < rad; i++)
			radpower[i] = alpha * (((rad * rad - i * i) * radbias) / (rad * rad));

		// fprintf(stderr,"beginning 1D learning: initial radius=%d\n", rad);

		if (lengthcount < minpicturebytes)
			step = 3;
		else if ((lengthcount % prime1) != 0)
			step = 3 * prime1;
		else {
			if ((lengthcount % prime2) != 0)
				step = 3 * prime2;
			else {
				if ((lengthcount % prime3) != 0)
					step = 3 * prime3;
				else
					step = 3 * prime4;
			}
		}

		i = 0;
		while (i < samplepixels) {
			b = (p[pix + 0] & 0xff) << netbiasshift;
			g = (p[pix + 1] & 0xff) << netbiasshift;
			r = (p[pix + 2] & 0xff) << netbiasshift;
			j = contest(b, g, r);

			altersingle(alpha, j, b, g, r);
			if (rad != 0)
				alterneigh(rad, j, b, g, r); /* alter neighbours */

			pix += step;
			if (pix >= lim)
				pix -= lengthcount;

			i++;
			if (delta == 0)
				delta = 1;
			if (i % delta == 0) {
				alpha -= alpha / alphadec;
				radius -= radius / radiusdec;
				rad = radius >> radiusbiasshift;
				if (rad <= 1)
					rad = 0;
				for (j = 0; j < rad; j++)
					radpower[j] = alpha * (((rad * rad - j * j) * radbias) / (rad * rad));
			}
		}
		// fprintf(stderr,"finished 1D learning: final alpha=%f
		// !\n",((float)alpha)/initalpha);
	}

	/*
	 * Search for BGR values 0..255 (after net is unbiased) and return colour
	 * index
	 * -------------------------------------------------------------------------
	 * ---
	 */
	public int map(int b, int g, int r) {

		int i, j, dist, a, bestd;
		int[] p;
		int best;

		bestd = 1000; /* biggest possible dist is 256*3 */
		best = -1;
		i = netindex[g]; /* index on g */
		j = i - 1; /* start at netindex[g] and work outwards */

		while ((i < netsize) || (j >= 0)) {
			if (i < netsize) {
				p = network[i];
				dist = p[1] - g; /* inx key */
				if (dist >= bestd)
					i = netsize; /* stop iter */
				else {
					i++;
					if (dist < 0)
						dist = -dist;
					a = p[0] - b;
					if (a < 0)
						a = -a;
					dist += a;
					if (dist < bestd) {
						a = p[2] - r;
						if (a < 0)
							a = -a;
						dist += a;
						if (dist < bestd) {
							bestd = dist;
							best = p[3];
						}
					}
				}
			}
			if (j >= 0) {
				p = network[j];
				dist = g - p[1]; /* inx key - reverse dif */
				if (dist >= bestd)
					j = -1; /* stop iter */
				else {
					j--;
					if (dist < 0)
						dist = -dist;
					a = p[0] - b;
					if (a < 0)
						a = -a;
					dist += a;
					if (dist < bestd) {
						a = p[2] - r;
						if (a < 0)
							a = -a;
						dist += a;
						if (dist < bestd) {
							bestd = dist;
							best = p[3];
						}
					}
				}
			}
		}
		return (best);
	}

	public byte[] process() {
		learn();
		unbiasnet();
		inxbuild();
		return colorMap();
	}

	/*
	 * Unbias network to give byte values 0..255 and record position i to
	 * prepare for sort
	 * -------------------------------------------------------------------------
	 * ----------
	 */
	public void unbiasnet() {

		int i;// j;

		for (i = 0; i < netsize; i++) {
			network[i][0] >>= netbiasshift;
			network[i][1] >>= netbiasshift;
			network[i][2] >>= netbiasshift;
			network[i][3] = i; /* record colour no */
		}
	}

	/*
	 * Move adjacent neurons by precomputed alpha*(1-((i-j)^2/[r]^2)) in
	 * radpower[|i-j|]
	 * -------------------------------------------------------------------------
	 * --------
	 */
	protected void alterneigh(int rad, int i, int b, int g, int r) {

		int j, k, lo, hi, a, m;
		int[] p;

		lo = i - rad;
		if (lo < -1)
			lo = -1;
		hi = i + rad;
		if (hi > netsize)
			hi = netsize;

		j = i + 1;
		k = i - 1;
		m = 1;
		while ((j < hi) || (k > lo)) {
			a = radpower[m++];
			if (j < hi) {
				p = network[j++];
				try {
					p[0] -= (a * (p[0] - b)) / alpharadbias;
					p[1] -= (a * (p[1] - g)) / alpharadbias;
					p[2] -= (a * (p[2] - r)) / alpharadbias;
				} catch (Exception e) {
				} // prevents 1.3 miscompilation
			}
			if (k > lo) {
				p = network[k--];
				try {
					p[0] -= (a * (p[0] - b)) / alpharadbias;
					p[1] -= (a * (p[1] - g)) / alpharadbias;
					p[2] -= (a * (p[2] - r)) / alpharadbias;
				} catch (Exception e) {
				}
			}
		}
	}

	/*
	 * Move neuron i towards biased (b,g,r) by factor alpha
	 * ----------------------------------------------------
	 */
	protected void altersingle(int alpha, int i, int b, int g, int r) {

		/* alter hit neuron */
		int[] n = network[i];
		n[0] -= (alpha * (n[0] - b)) / initalpha;
		n[1] -= (alpha * (n[1] - g)) / initalpha;
		n[2] -= (alpha * (n[2] - r)) / initalpha;
	}

	/*
	 * Search for biased BGR values ----------------------------
	 */
	protected int contest(int b, int g, int r) {

		/* finds closest neuron (min dist) and updates freq */
		/* finds best neuron (min dist-bias) and returns position */
		/*
		 * for frequently chosen neurons, freq[i] is high and bias[i] is
		 * negative
		 */
		/* bias[i] = gamma*((1/netsize)-freq[i]) */

		int i, dist, a, biasdist, betafreq;
		int bestpos, bestbiaspos, bestd, bestbiasd;
		int[] n;

		bestd = ~(((int) 1) << 31);
		bestbiasd = bestd;
		bestpos = -1;
		bestbiaspos = bestpos;

		for (i = 0; i < netsize; i++) {
			n = network[i];
			dist = n[0] - b;
			if (dist < 0)
				dist = -dist;
			a = n[1] - g;
			if (a < 0)
				a = -a;
			dist += a;
			a = n[2] - r;
			if (a < 0)
				a = -a;
			dist += a;
			if (dist < bestd) {
				bestd = dist;
				bestpos = i;
			}
			biasdist = dist - ((bias[i]) >> (intbiasshift - netbiasshift));
			if (biasdist < bestbiasd) {
				bestbiasd = biasdist;
				bestbiaspos = i;
			}
			betafreq = (freq[i] >> betashift);
			freq[i] -= betafreq;
			bias[i] += (betafreq << gammashift);
		}
		freq[bestpos] += beta;
		bias[bestpos] -= betagamma;
		return (bestbiaspos);
	}
}